Modernization and Optimization of Flue Gas Cleaning Plants

Solutions for Air Pollution Control Upgrades following BAT revision in 2017

Speakers:
Dr. Stefan Binkowski (Department Manager Flue Gas Cleaning Process)
Dr. Axel Thielmann (Department Manager Proposals Flue Gas Cleaning)
Employment Record Dr. Stefan Binkowski

<table>
<thead>
<tr>
<th>Year</th>
<th>Position</th>
<th>Department/Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013 - present</td>
<td>Steinmüller Engineering GmbH, Gummersbach, Germany</td>
<td>Engineering and Supplies for Power Plants Department Manager Flue Gas Cleaning Process</td>
</tr>
<tr>
<td>2009 - 2013</td>
<td>Steinmüller Engineering GmbH, Gummersbach, Germany</td>
<td>Engineering and Supplies for Power Plants Head of Flue Gas Desulphurization Department</td>
</tr>
<tr>
<td>2005 - 2009</td>
<td>Steinmüller Engineering GmbH, Gummersbach, Germany</td>
<td>Engineering and Supplies for Power Plants Process Engineer Flue Gas Cleaning</td>
</tr>
<tr>
<td>2001 - 2005</td>
<td>Universität Dortmund, Germany</td>
<td>Lehrstuhl Umwelttechnik, Fachbereich Chemietechnik, Dr.-Ing. (PhD)</td>
</tr>
<tr>
<td>Year</td>
<td>Institution</td>
<td>Location</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td>-------------------------</td>
</tr>
<tr>
<td>2015 - present</td>
<td>Steinmüller Engineering GmbH, Gummersbach, Germany</td>
<td>Deutschland</td>
</tr>
<tr>
<td>2013 - 2014</td>
<td>Steinmüller Engineering GmbH, Gummersbach, Germany</td>
<td>Deutschland</td>
</tr>
<tr>
<td>2009 - 2012</td>
<td>Siemens AG, Erlangen, Germany</td>
<td>Deutschland</td>
</tr>
<tr>
<td>2006 - 2008</td>
<td>Siemens AG, Berlin, Germany</td>
<td>Deutschland</td>
</tr>
<tr>
<td>2001 - 2005</td>
<td>Max-Planck-Institute for Chemistry, Mainz, Germany</td>
<td>Deutschland</td>
</tr>
<tr>
<td>1997 - 2000</td>
<td>ETH Zürich, Switzerland</td>
<td>Switzerland</td>
</tr>
</tbody>
</table>
Industrial Emissions Directive – Rationale

Best
most effective in achieving a high general level of protection of the environment as a whole

Available
developed on a scale to be implemented in the relevant industrial sector, under economically and technically viable conditions, advantages balanced against costs

Techniques
the technology used and the way the installation is designed, built, maintained, operated and decommissioned

BAT: Best Available Techniques
BREF: BAT REFerence Document
BREF 2017: Emission Limit Values (ELVs) under discussion for existing Large Combustion Plants (LCPs) ≥ 300 MWth

<table>
<thead>
<tr>
<th></th>
<th>Current IED</th>
<th>BAT Yearly(^1)</th>
<th>BAT Daily(^1)</th>
<th>BREF 2017(^2)</th>
<th>China 2020(^3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO(_x) [mg/Nm(^3)]</td>
<td>200</td>
<td>65-175</td>
<td>85-220</td>
<td>150</td>
<td>50</td>
</tr>
<tr>
<td>PM [mg/Nm(^3)]</td>
<td>20</td>
<td>2-10</td>
<td>2-10</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>SO(_2) [mg/Nm(^3)]</td>
<td>200</td>
<td>10-180</td>
<td>25-220</td>
<td>130</td>
<td>35</td>
</tr>
<tr>
<td>HF, HCl [mg/Nm(^3)]</td>
<td>---</td>
<td>1-5</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Hg [µg/Nm(^3)]</td>
<td>---</td>
<td>1-3 (hard coal)</td>
<td>1-7 (lignite)</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

1: Rolf Becks, Umweltbundesamt (German “Environmental Protection Agency”), during the 11\(^{\text{th}}\) “VGB-Fachkonferenz REA-, SCR- und Entstaubungsanlagen in Großkraftwerken” 25./26. November 2015
2: expected new ELVs in the European Union
3: ELVs required in the 13\(^{\text{th}}\) Five Year Plan 2015-2020
Potentially all Power Plants in the EU (≥ 300 MWth, > 90% solid fuels) will require Air Pollution Control Equipment Upgrades due to the BREF 2017

Source: Emission data reported for 2012 under the European Pollutant Release and Transfer Register (E-PRTR)
Content

1. Introduction – Revision of LCP BREF
2. DeNOx – Our Post-Combustion Solutions
3. Electrostatic Precipitators – ESPs
4. Flue Gas Desulphurization – FGDs
5. Summary
DeNOx – Steinmüller Product Range

Primary Measures:
- Replacement or modifications of burners to Low-NOx-Burners
- Installation of Over-Fire-Air ports
- Optimization of air supply / air ratio
- Adaptation of coal mills

Secondary Measures:
- SCR retrofits and upgrades
- SNCR systems
- Adaptation of heating surfaces following SCR retrofits
DeNOx – Shell Wesseling

Reference project key data

- Location Wesseling (near to Cologne) / Germany
- Refinery with fuel oil fired Boiler (unit 6)
- Boiler capacity: 200 MW\text{therm.}
- Flue gas volume flow: 192,000 Nm3\text{wet}/h
- Flue gas temperature: 325 °C
 (downstream of air preheater)
- NOx Emission after boiler: 570 mg/Nm3
- Firing of HFO / Cracker residue (HHVR) / off-gas
DeNOx – Shell Wesseling

Shell Wesseling requirements:

- NOx less than 140 mg/Nm³ @ 3 % O₂,dry
- NH₃ slip less than 1 mg/Nm³ @ 3 % O₂,dry

Steinmüller scope:

- Engineering and Supply of new low NOx burners
- Engineering and Supply of SCR DeNOx
 (consortium with Balcke Dürr for erection)
- Engineering of boiler heating surface modifications
 (as sub-supplier to Balcke Dürr)
DeNOx – Shell Wesseling - Steinmüller Scope

- SCR casing
- Soot blowers
- NH₃-Injection
- Duct upstream catalyst
- Static mixer
DeNOx – Shell Wesseling - Modification of Pressure Part of Boiler 6

Technical Data:

Steam data 200 t/h
Max. operation pressure 132.4 bar
Test pressure (1.2 x 132.4 bar) 159 bar
Superheated steam temperature 525 °C
Year of construction 1978

Heating surfaces:

ECO I: 564 m²
ECO II: 542 m²
Natural circulation system: 1243 m²
Superheater sling tube 173 m²
Pre-Superheater 1 1187 m²
Pre-Superheater 2 522 m²
Final Superheater 249 m²
Total: 4480 m²
DeNOx – Shell Wesseling - Customer Benefits

- Integrated design (modification of heating surface and temperature window for SCR) for all load cases
- LowNOx burner design + SCR allows:
 - Cost benefit analysis of primary and secondary measures
 → Lower investment and operational costs
 - Reduction of interfaces
 → Easier contracting and handling of guarantees
- Construction and erection in existing plant with limited space
- Burners for special applications (HFO, HHVR, off-gas)
<table>
<thead>
<tr>
<th></th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction – Revision of LCP BREF</td>
</tr>
<tr>
<td>2</td>
<td>DeNOx – Our post-combustion solutions</td>
</tr>
<tr>
<td>3</td>
<td>Electrostatic Precipitators – ESPs</td>
</tr>
<tr>
<td>4</td>
<td>Flue Gas Desulphurization – FGDs</td>
</tr>
<tr>
<td>5</td>
<td>Summary</td>
</tr>
</tbody>
</table>
ESPs – Upgrade Possibilities

Measures I

- Additional ESP field OR higher ESP casing
- Adapted ESP lane width
 - Reduced flue gas velocity and hence higher dust removal efficiency
- Deployment of modern 3-phase high voltage aggregates
- Adapted high voltage control
ESP – Upgrade Possibilities

Measures II
- Primary removal of coarse particles in the inlet hood
- Homogenization of flue gas velocity distribution

Before

After
ESPs – Example: CET Govora

- Power plant CET Govora, 7 Units of 380 MWth
 - Flue gas volume flow: 1.024.000 m³/h
 - Dust load (raw gas): 70.000 mg/Nm³ @ 6% O₂
 - Clean gas before retrofit: > 200 mg/Nm³ @ 6% O₂
 - Clean gas after retrofit: < 50 mg/Nm³ @ 6% O₂
 - Pressure loss improvement: - 30 Pa (0.3 mbar)

- Revamp of 2 existing ESP casings
 - Including Engineering and Supply of steel components
 - Reduce dust emission < 50 mg/Nm³
 - New ESP-design (roof) whilst maintaining original footprint and creating a reduction in pressure loss
 - Reduction of dust emission from 280 mg/Nm³ to below 30 mg/Nm³
ESPs – Example: CET Govora - Implementation
ESP s – Customer Benefits

- Reduction of dust emissions < 10 mg/Nm³
- Upgrade possible whilst maintaining original footprint and weight (SE low weight ESP-roof)
- Reduction in pressure loss (adapted ESP lane width & ESP hoods)
- Power savings (modern high voltage aggregates & control)
- Robust design
Content

1. Introduction – Revision of LCP BREF
2. DeNOx – Our post-combustion solutions
3. Electrostatic Precipitators – ESPs
4. Flue Gas Desulphurization – FGDs
5. Summary
FGD – Upgrade Possibilities

• Optimizing gas flow distribution and gas-liquid contact
 • Nozzle type and nozzle arrangement
 • Wall rings
 • Tray
 • CFD analysis
• Optimizing FGD operation
 • Limestone quality, injection point
 • Oxidation air system
 • Liquid level
 • Number of operated pumps
 • pH value
• Combination of above mentioned measures
Steinmüller Engineering “tray basket elements”

- Material: poly propylene with reinforcement
- Standardized modular basket design
- Easily combined to cover the whole cross section
- Project specific variation of hole size and arrangement
- Convenient working platform when covered with planking
- Different absorber shapes can be covered
FGD – General Functional Principle of the Tray

Spray nozzles

Tray basket element

Flue gas flow
FGD – General Functional Principle of the Tray

- Pressure loss across the entire cross-section causes a homogenous flue gas distribution above the tray.
- Relative low pH-value causes enhanced Limestone dissolution on the tray.
- High SO$_2$ content in the gas phase causes high SO$_2$ absorption rate on the tray.
- Intensive phase mixing favors the separation of the finest particles (fine dust, SO$_3$).

Flue gas flow inlet (asymmetric)

Surface of bubble layer

Tray
FGD – Flue Gas Velocity Distribution

- Nearly homogeneous flue gas flow in the absorption zone by implementation of a tray
- More effective SO_2 separation by the spray layers
FGD – Tray Basket Elements

Steinmüller Engineering “tray basket elements”

• Establish a bubbling layer → liquid contact layer
• Enlarged contact surface
• Increase removal efficiency of \(\text{SO}_2, \text{SO}_3, \text{Dust} \)
• Influence on the removal efficiency comparable to one spray level
• More equal gas distribution
• Increase limestone utilization
• Reduce residual limestone in gypsum
• Increase oxidation of sulfite
• Reduce mercury re-emission
FGD – Tray Revamp: References

<table>
<thead>
<tr>
<th>Location</th>
<th>Fuel</th>
<th>Volume flow [Nm³/h]</th>
<th>Original removal rate</th>
<th>Removal rate after Revamp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Völklingen (HKV)</td>
<td>Hard Coal</td>
<td>800.000</td>
<td>88 %</td>
<td>94 %</td>
</tr>
<tr>
<td>Völklingen (MKV)</td>
<td>Hard Coal</td>
<td>600.000</td>
<td>87 %</td>
<td>94 %</td>
</tr>
<tr>
<td>Deuben</td>
<td>Lignite</td>
<td>625.000</td>
<td>95 %</td>
<td>98 %</td>
</tr>
<tr>
<td>Novaky</td>
<td>Lignite</td>
<td>1.250.000</td>
<td>96 %</td>
<td>98 %</td>
</tr>
<tr>
<td>Herten</td>
<td>Waste</td>
<td>60.000</td>
<td>90 %</td>
<td>96 %</td>
</tr>
</tbody>
</table>
FGD – Tray Revamp: Example Deuben

- **SO₂ content in raw gas:**
 7.600 mg/Nm² → 8.200 mg/Nm³ (6% O₂)

- **SO₂ content in raw gas:**
 380 mg/Nm³ → < 230 mg/Nm³

- **Max. flue gas flow:**
 625,000 Nm³/h (wet)

- **No additives (e.g. adipic acid)**

Combine first and second spray level to create space for tray installation
FGD – Tray Revamp: Example Deuben

- Install Tray modules at support of former 1st level
- Installation time: 231 hours
FGD – Tray Revamp: Installation
FGD – Tray Revamp: Advantages and Disadvantages

<table>
<thead>
<tr>
<th>Influences</th>
<th>With Tray</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO₂ / SO₃ separation rate</td>
<td>Increase of the separation rate</td>
</tr>
<tr>
<td>Pressure loss</td>
<td>Increase of the pressure loss 0 - 6 mbar</td>
</tr>
</tbody>
</table>
| Power consumption at constant separation rate (i.e. 5 spray levels without a tray vs. 4 spray levels with tray) | Recirculation pumps: less power consumption
Booster fan: more power consumption |
| Limestone utilization factor | Slight increase by about 1 %, i.e. slight decrease of limestone consumption|
| Flue gas velocity distribution | Homogeneous flue gas distribution after the tray |
| Dust separation | Reducing of the residual dust content |
| Oxidation of Sulfite and Mercury | Increase oxidation of sulfite (less deposits), increase oxidation of mercury (less re-emission) |
FGD – Tray Revamp: Pressure Loss

• New coal quality; SO₂ increase: 10,000 mg/Nm³ → 14,500 mg/Nm³ (6% O₂)
• New emission limit value: < 400 mg/Nm³ → < 200 mg/Nm³
• Constant pressure loss:
• Maximum flue gas flow:
• No additives (e.g. adipic acid)

• Installation of tray level increases pressure loss
• Full compensation of pressure loss by:
 • Reduction of the spray levels
 (also save power for 1 recycle pump)
 • Use of other nozzle types
 • Modification of mist eliminator

Guarantee: No additional pressure loss for overall system!
FGD – Tray Revamp: Customer Benefits

Steinmüller Engineering offers customized FGD upgrades for:

- Lower emission limit values for SO₂, SO₃, Dust (IED 75/2010 & BREF)
- Changing fuel range (e.g. higher S-content of coals)
- Cost savings I (e.g. pump power)
- Cost savings II (lower maintenance expenditures, shorter outage times)
- Complete system from one source
 - Less interfaces
 - SE has the process know-how and the contacts to sub-supplier → best interaction
FGD – Tray Revamp: Savings on OPEX Example

- Cost savings by less power consumption (savings recirculation pumps minus booster fan upgrade):
 - 300,000 – 500,000 €/a
- Cost savings by less limestone consumption:
 - 50,000 – 90,000 €/a
- Cost savings by scaffolding in the lower part of the absorbers:
 - ca. 50,000 €/revision

- Total operational cost savings for two absorbers (2x 1,7 Mio. m³/h)
 ➔ approx. 500,000 €/a
Content

1. Introduction – Revision of LCP BREF
2. DeNOx – Our post-combustion solutions
3. Electrostatic Precipitators – ESPs
4. Flue Gas Desulphurization – FGDs
5. Summary
Summary

Our Solutions for Air Pollution Control Upgrades

• Meeting of emission limit requirements in answer to IED & BREF
• Balancing (CAPEX & OPEX) between primary and secondary APC upgrades
• Integrated plant solutions
• Reducing interfaces
• Best combination of qualified equipment sub-suppliers
• Cost savings
• Additional SCR experience through IHI (e.g. mercury oxidation)

We will find the best solution for your plant together!
Thank you for your attention